⊙CHIPKIN

LonWorks FieldServers: Overview, Configuration, and Application

Article Highlights

This article serves as a comprehensive guide to LonWorks technology, offering detailed insights into various critical aspects. It begins with an extensive LonWorks overview, covering essential topics like network variable types, LonWorks addressing, network managers, and data transfer mechanisms. Furthermore, it delves into FieldServer configuration essentials, providing a thorough understanding of basic configuration files, commissioning processes, and structured variable types.

The discussion extends to network management applications, showcasing examples of configuration files for device identification, mapping, and domain/subnet control. Additionally, special case applications are explored, including working with user network variable types (UNVTs), LonMark standards, and function blocks. Whether you're a novice or an experienced user, this article offers valuable insights into understanding LonWorks technology for building automation and control systems.

Contents

1	LON	NWORKS OVERVIEW	3
:	1.1	Network Variable Types	3
	1.2	LONWORKS ADDRESSING	3
	1.3	NETWORK MANAGERS	3
	1.4	DATA TRANSFER – UPDATE VS POLLED	4
	1.5	DATA TRANSFER – IMPLICIT VS EXPLICIT	4
	1.6	XIF FILES	4
-	1.7	Neuron ID's vs Program ID's	5
2	FIEI	LDSERVER CONFIGURATION OVERVIEW	6
	2.1	BASIC CONFIGURATION FILE (GENERAL PARAMETERS)	6
2	2.2	Basic Configuration File (Connection Information)	7
2	2.3	BASIC CONFIGURATION FILE (MAPPING)	7
	2.4	XIF FOR BASIC CONFIGURATION FILE	8
2	2.5	COMMISSIONING EC001 INTO LONMAKER	8
2	2.6	Structured Variable Types	13
2	2.7	Selective transfer of Structured Variables	14
	2.8	SNVT and UNVT Scaling	14
3	NET	TWORK MANAGEMENT APPLICATION	15
	3.1	Data Transfer Mechanism	15
	3.2	Example Configuration File (Identify Devices)	15
	3.3	Example Configuration (Forcing Domain and Subnet)	15
3	3.4	Working with UNVT's	16
	3.5	LonMark	16
3	3.6	Function Blocks	17
	3.7	Function Blocks (Config Example)	17

1 LonWorks Overview

LonWorks is a communication protocol used in building automation and control networks. It enables devices from different manufacturers to communicate and work together within a network, facilitating centralized control and monitoring of building systems such as lighting, HVAC, and security.

1.1 Network Variable Types

In LonWorks networks, various types of network variables play crucial roles in facilitating communication and data exchange. These include:

- SNVT Standard Network Variable Type
- UNVT User Network Variable Type
- SCPT Standard Configuration Parameter Type
- UCPT User Configuration Parameter Type

1.2 LonWorks addressing

Domain: E4

- DSN Domain, Subnet, Node.
- Typically, the Network Manager assigns the domain address for a network, following which the required subnets for a domain are determined by routers needed in the system. Node addresses on each subnet are then allocated by the Network Manager.
- The LNS report utility can print out all DSN addresses for a Domain.

1.3 Network Managers

- LonMaker, LonWatcher, and others...
- Traditional LonWorks setup requires a network manager.
- Network manager "binds" data points together and can then be removed.
- Network Managers allocate addressing on the network.
- A LonWorks network can be commissioned without a Network Manager, but this requires more advanced techniques.

1.4 Data Transfer – Update vs Polled

- Update variables send data to a remote device using an event driven mechanism.
- Event driven mechanisms include Continuous update, Update on change, and Throttling mode.
- Polled variables wait to be queried for data, and then respond when queried.
- Typically, polled variables operate on a continuous update methodology.

1.5 Data Transfer – Implicit vs Explicit

- With implicit addressing, the network manager assigns addresses for communication and ensures (via address tables in the devices) that communication connections are known.
- With explicit addressing, the device knows the address of the point in the remote device and communicates directly without the assistance of the Network Manager.

1.6 XIF files

XIF (external interface) files contain information about the variables on a device, and all the necessary variable properties.

XIF files go a long way to providing all the information needed for FieldServer configuration, but do not contain DSN information.

1.7 Neuron ID's vs Program ID's

- A Neuron ID Uniquely defines the Neuron chip on the network. No two Neuron chips in the world have the same ID.
- A Program ID defines an application on a hardware platform, and it is possible for two hardware platforms to have the same Program ID because they are running the same application.
- If an application changes, then its Program ID must change too. This means when Lon variables are modified in the FieldServer configuration, the Program ID must change.
- If the Program ID changes for a device, then that device needs to be removed from a network, and then recommissioned.
- The Lesson to be learned: Plan your variable list carefully before commencing with binding.

2 FieldServer Configuration overview

2.1 Basic Configuration File (General Parameters)

Define Title and Data Array:

//=====================================				
// FieldServer Information				
Bridge				
Title				
EC001 FieldServer v1.00a				
//=====================================				
// Data Arrays				
Data_Arrays				
Data_Array_Name	Data_Format	Data_Array_Length		
DA_Temps	FLOAT	10		

2.2 Basic Configuration File (Connection Information)

Define Connection and Node:

//=====================================				
// LonWorks Connection				
Connections				
Adapter	Protocol			
Lonworks	Lonworks			
//=				
// LonWorks Node				
Nodes				
Node_Name	Protocol			
EC001	Lonworks			

2.3 Basic Configuration File (Mapping)

Define SNVT's (Map them to the Data Array):

//=====================================						
// LonWorks Map Descriptors						
Map_Descriptors						
Map_Descriptor_Name	Data_Array_Name	Data_Array_Offset	Lon_Function	Function	Node_Name	SNVT_Type
nviSpaceTmp	DA_Temps	0	NVUI	Server	EC001	SNVT_temp_p
nvoSpaceTmp	DA_Temps	1	NVUOIMX	wrbx	EC001	SNVT_temp_p

2.4 XIF for Basic Configuration File

fserver.xif:

```
File: fserver-2.xif generated by LonDriver Revision 1.20(g), XIF Version 4.0
Copyright (c) 2000-2004 by FieldServer Technologies
All Rights Reserved. Run on Tue Jul 26 07:58:26 2005
80:00:95:47:1E:02:04:36
2 15 1 2 0 14 11 3 3 12 14 11 11 11 11 3 0 16 63 0 1 11 2
0 5 7 13 28 0 0 15 5 3 109 63
1710444152000
78125000000000000
00000001585121415
*
"EC001 FieldServer v1.00a
VAR nviSpaceTmp 0 0 0 0
01630000000000
*
105 * 1
20010
VAR nvoSpaceTmp 1 0 0 0
01631000000000
*
105 * 1
20010
```

2.5 Commissioning EC001 into LonMaker

Step 1: Load config into FieldServer and reboot FieldServer

Step 2: Open a project in LonMaker

Step 3: Drag device into Visio drawing

🖳 Webinar07 - Echelon LonMaker - [Webinar07:Subsystem 1]	×
🗓 Ele Edit View Insert Format Tools Shape LonMaker Window Help Type a question for help 👻 - 🗗	×
□ • ☞ 🖬 🔒 🚳 💁 🖏 🌾 🗼 🛍 🛍 🍼 🗠 · ∝ - 😰 • ୠ 💽 ₅² • A • □ • ∕ • ઉ • 🥙 • 🖓 .	
Normal • Arial • Spt. • B I U E 2 2 • 2 • 2 •	
E LonMaker Basic Shapes × R	•
Block Do	
Chame Subsystem ILON	
Theur Compare Connector	
Network Network Variable	
Network LNSText	
Service warge Box Control Device	
mag_in mag_out	
Clared 1	
× (L.4.) N Subsection 1.7 The Blacks (L.	-
Left = 0 in. Right = 0.625 in. Bottom = 7.091 in. Top = 7.591 in.	//.

Step 4: Give the device a name & select the "commission device" option

New Device Wiza	rd	X
	Enter Device Name: Device Name: Template Name: Number of Devices to Create: 1	
	< <u>B</u> ack <u>N</u> ext > Cancel	Help

Step 5: For XIF definition, select "Upload from Device"

New Device Wizard	
Specify Device Template	
Current Template:	
Device Name(s): EC001	
External Interface Definition	
C Load XIF File: Browse	
Template Name: EC001	
C Existing Template Name: LNS Network Interface	
< <u>B</u> ack <u>N</u> ext > Cancel	Help

Step 6: For Device Channel, select "Auto Detect"

New Device Wiz	zard
Specify Device Ch Device Name:	annel EC001
Auto-Detect	
○ <u>S</u> pecify	Channel <u>X</u> cvr Type: Alb Na <u>m</u> e: Channel 1
	< <u>B</u> ack <u>N</u> ext > Cancel Help

© 2023 CHIPKIN AUTOMATION SYSTEMS

Step 7: Leave "Device Properties" as is

Step 8: For Device Identification Method, select "Service Pin"

New Device Wizard	
Device Identification Method	
Device Name(s): EC001	
Service Pin	
С <u>M</u> anual Neuron <u>I</u> D:	
< <u>B</u> ack <u>N</u> ext > Cancel	Help

Step 9: Do not "Load Application Image" (Leave unchecked) Step 10: For State, select "Online" and leave the rest as is:

New Device Wiz	ard	
Specify the initial st Device Name(s):	tate of the device and the source of CP values EC001	
State C Default C Offline C Online C Disable	Source of Configuration Property Values	
	< <u>B</u> ack Finish Cancel He	ip

Step11: Press the Service Pin on the FieldServer, wait for EC001 to commission. Step 12: Drag a Function Block into Visio

Webinar07 - Echelon LonMaker - IWebinar07/Subsystem 11	ואר
19] File Edit View Insert Format Tools Shape LonMaker Window Holp Type a question for help + _	ÐΧ
□·\$	
No Style $-A_{12}$ $-B_{22}$ $U \equiv \Xi \equiv \Delta - \mathcal{J} + \partial_{1} + \Xi + \Xi + \Xi$	
E IonMaker Basic Shapes X	-
	-
V If (> > > > > > > > > > > > > > > > > >	•
Width = 0.625 in. Height = 0.5 in. Angle = 0* Page 1/1	10

Step13: Leave the first menu as is with "Virtual Function Block" selected. Click on "Next". Step 14: Give the FB a Name, and Select "Create shapes for all network variables"

New Functional E	Block Wizard	×
Enter Functional Bloc	* Name	
<u>F</u> B Name:	EC00_Temps	
FB Type:	Virtual Functional Block	
<u>N</u> umber of FBs to Cre	eate: 1	
Create shapes fo	r all network variables	
	< <u>B</u> ack Finish Cancel Help	

The end result: You are now ready to bind to other devices using the "Connector" Tool.

2.6 Structured Variable Types

		Allow for 2 points in the						
//Structured SNVT						Data Array		
Map_Descriptors								
Map_Descriptor_Name	Data_Array_Name	Data_Array_Offset	Function	Node N	Lon_Function	SNVT_Index	SNVT_Type	
nvoRhEnable	DA_AO_01	11		Lon_01	NMFETCHC	9	SNVT_switch	
nvoUnOceRh	DA_AO_01	3	rdbe	Lon_01	NMFETCHC	10	SNVT_lev_percent	

- Structured Variable Types pack more than one variable into the variable type
- SNVT_switch, for example, has two variables associated with it: Value (0-100) and state (0/1).
- The FieldServer can extract all variables from a structured type. Some are easy to work with, others are not.
- Note: while extracting ASCII characters out of a structured SNVT is possible, it does not make much sense in the "Gateway" model due to limitations of other protocols.

2.7 Selective transfer of Structured Variables

//==================		Loa					
// Temperature Mapping	in Deg_F				value needed		
Map_Descriptors							
Map_Descriptor_Name	Data_Array_Name	Data_Array_Offset	Lon_Function	Function	Node_ Name	SNVT_Type	SNVT_Option
nviAlarm_1	DA_Binary_State	0	NVUI	Server	EC001	SNVT_switch	State
nvoAck_1	DA_Binary_State	1	NVUOIMX	wrbx	EC001	SNVT_switch	State

When working with a Structured Variable, FieldServer allows you to fetch just the portion of the structured variable needed by declaring the SNVT_Option field.

2.8 SNVT and UNVT Scaling

//======	S	Scale Celsius to					
// Temperature Mapping	ı in Deg_F					Fahrenheit	
Map_Descriptors							
Map_Descriptor_Name	Data_Array_Name	Data_Array_Offset	Lon_Function	Function	Node_ Name	SNVT_Type	SNVT_Units
nviSpaceTmp	DA_Temps	0	NVUI	Server	EC001	SNVT_temp_p	Deg_F
nvoSpaceTmp	DA_Temps	1	NVUOIMX	wrbx	EC001	SNVT_temp_p	Deg_F

- All SNVT's include required scaling in their definition.
- The FieldServer automatically scales the raw data according to the SNVT sca ling rules. Value in Data Array is the scaled value.
- Note that LonWorks is inherently METRIC. Thus, non-metric applications still require extra parameters in the configuration (SNVT_Units field)
- When working with UNVT's, raw data is received in a byte Data Array. Required scaling and byte concatenation needs to be done in the configuration.

3 Network Management Application

3.1 Data Transfer Mechanism

- This is a special function intended for use by host systems that need to monitor the status of variables on a network (e.g: Network Managers)
- This function uses explicit polling to obtain the needed variables.
- It is possible to write data using this function too
- This function has some very useful applications when integrating the FieldServer into larger networks

3.2 Example Configuration File (Identify Devices)

	NMFETCHC Network Management Fetch
s ¢	Network Manager Universide Manager

//=====================================		=====		
// Common Information				
Bridge				
Title				
NMManager				
Sub	onet on which the rem	ote 🛛 🖉 No	de Address of the	
//=====================================	device resides		remote device	====
//				
// Remote Nodes				
Nodes				
Node_name	Subnet_ID	Node_ID	Adapter	Protocol
Lon_01	1 V	1	Lonworks	Lonworks

3.3 Example Configuration (Forcing Domain and Subnet)

LonWorks FieldServers: Application, Configuration and Overview

//= //	Subnet on whic remote device re	ch the resides	Node Address of the remote device)=
// Remote Nodes)
Nodes				
Node_name	Subnet_ID	Node_ID	Adapter	Protocol
Lon_01	1	1	LonWorks	LonWorks

3.4 Working w	ith UNVT's	Once you have the data in the			data arra	ed to know	now Byte		
//UNVT		you ne	you need to know what it means					IVT	
Map_Descriptors								Γ	
Map_Descriptor_Name	Data_Array_Name	Dair	Lon_Function	Function	Node_Name	SNVT_index	SNVT_Type		/T_byte_length
D1nvoBoilerEnable	DA_BI_01	3	NMFETCHC	rdbc	Lon_1	46	SNVT_switch		
DinvoInUse	DA_AI_01	5	NMFETCHC	rdbe	Lon_1	22	UNVT		1
D1nvoManValue	DA_AI_01	6	NMFETCHC	rdbc	Lon_1	23	UNVT		4
D1nvoModBoilrShare	DA_AI_01	10	NMFETCHC	rdbc	Lon_1	30	UNVT		6

- By definition, these are USER defined, so a road map of the UNVT structure is needed before one can do anything useful with it.
- A road map must contain byte length of UNVT, as well as the breakdown of what each byte represents.

3.5 LonMark

- LonMark is the controlling body for network standards in the LonWorks environment.
- LonMark's objective is promoting interoperability and standardized interfaces.
- LonMark certification for non-LonWorks devices is possible through FieldServer.

LONMARK International

۲

LonMark configurations require special parameters.

//======					
11					
// Common Information					
Bridge					
Title		System_Statio	n_Address		
&3.2@13110EMCP2;FS			1		
Map_Descriptors					
Map_Descriptor_Name		Node_Name	SNVT_Type	SNVT_Option	Nv_Selfdoc_text
nviStartCmd		Lon_Srv_1	SNVT_switch	state	"@0 01;StartCmd"
nviFaultResetCmd		Lon_Srv_1	SNVT_switch	state	"@0 02;FaultResetCm

Due to the complexity of LonMark configurations, enlisting the assistance of FieldServer Technologies is advised.

3.6 Function Blocks

- Function Blocks help separate data within a device for more convenient binding.
- Allocation of Lon variables to function blocks is possible via configuration in the FieldServer.

3.7 Function Blocks (Config Example)

// Common Information	LonMark profiles are 520	title declares 25 FB's called "Out", and 25 FB's called "In". LonMark profiles are 520 and 521.			
11					
Bridge					
Title	System_Address				
&3.2@0Node,520[25]Out,521[25]In;FS	11				

// // FB Map	First Map Des next 2 decl	criptor Declares t are the variables	the FB. The in the FB				
Map_Descriptors				_			
Map_Descriptor_Name	Data_Array_Name	Data_Array_Offset	Lon_Function	Function	Node_Name	SNVT_Type	Nv_Selfdoc_text
nvoAnalog_01	Analog_Out	0	NVUOIMC	WRBC	Lon_Srv_1	SNVT_lev_percent	@1 01;-
nvoAmp1_01	Out_01	0	NVUOIMC	WRBC	Lon_Srv_1	SNVT_amp	@1#01-
nvoAmp2_01	Out_01	1	NVUOIMC	WRBC	Lon_Srv_1	SNVT_amp	

The Self Documentation text is used to declare a variables association with a Function Block.